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Abstract A turbidostat is an apparatus used to continuously culturing microorgan-
isms. The concentration of the microorganism in the turbidostat can be controlled by
the photoelectricity system or other devices. When the concentration of the microor-
ganism is lower than a critical level, the dilution rate keeps constant. Once the con-
centration reaches the critical level, the dilution rate can be increased by the control of
the photoelectricity system. Based on the design ideas of the turbidostat, a differential
equation with impulsive state feedback control, which has no explicit solutions, is
proposed for the turbidostat system. By the existence criteria of periodic solution of
a general planar impulsive autonomous system, the conditions for the existence of an
order one periodic solution of the system are obtained. Furthermore, it is pointed out
that the system either tends to a stable state or has a periodic solution. Finally, some
discussions and numerical simulations are given.

Keywords Turbidostat · Microorganism · Continuous culture · Impulsive control ·
Periodic solution

1 Introduction

Bioreactor control has become an active area of research on the continuous culture of
microorganism in recent years [1]. The chemostat is an important laboratory apparatus
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used to continuously culturing microorganisms (see, for example, [2–11] and the refer-
ences therein) [8]. It can be used to investigate microbial growth and has the advantage
that the parameters are easy to measure. However, with the growth of the microorgan-
ism and its concentration increasing in the chemostat, the effect of inhibition between
the production and other negative effect will occur when the concentration of the
microorganism reaches a critical value. For the purpose of continuously culturing the
microorganism and decreasing the inhibition effect, it is necessary to keep the con-
centration of microorganism lower than a certain level. So the chemostat with the
feedback control of the dilution rate, which is often referred to as a turbidostat by
bio-engineers and biologists [12], is established. In this sense, the turbidostat is actu-
ally a continuous culture apparatus (see Fig. 1), similar to the chemostat, which has
feedback between the turbidity of the culture vessel and the dilution rate (from http://
en.wikipedia.org/wiki/Turbidostat). In the turbidostat, an optical sensor measures the
turbidity of the fluid and this signal is used to control the dilution rate [12]. There are
some papers investigating the mathematical models on the turbidostat, for example,
coexistence of two species in the turbidostat was shown numerically by Flegr [13],
and later analytically by De Leenheer and Smith [11]. Tang and Chen [14], Jiang et al.
[15] and Smith [16] have studied the state-dependent models with impulsive state
control, where the model has a first integral, and obtained the complete expression
of the period of the periodic solution. Jiang et al. [17] and Zeng et al. [18] have also
discussed the models concerning integrated pest management (IPM), which have no
explicit solution, by applying the Poincare principle and Poincare-Bendixson of the
impulsive differential equation, respectively. In addition, some papers (e.g. [9,19])
have investigated the impulsive differential system in the fields of biological math-
ematics. However few papers have discussed the system concerning the turbidostat
using impulsive differential equation with the state feedback control.
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  Chemostat Turbidostat

Fig. 1 The sketch map of chemostat and turbidostat. (1) Reservoir of sterile medium; (2) valve controlling
flow of medium; (3) outlet for spent medium; (4) photo cell; (5) light source (the resource of turbidostat from:
http://www.studentsguide.in/microbiology/microbial-nutrition-growth/chemostat-and-turbidostat.html)
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In this paper, we will discuss the turbidostat model with the impulsive state feedback
control according to the existence criteria of periodic solution of the general impulsive
autonomous system in [18]. The remainder of the paper is organized as follows. In
Sect. 2, we formulate a differential equation with the impulsive state feedback control
according to the design ideas of the turbidostat. Some definitions, existence criteria
of the periodic solution of a general planar impulsive autonomous system and related
theorems are given. In Sect. 3, the qualitative analysis is given and furthermore the
existences of order one periodic solution is investigated. Finally, some discussions and
numerical simulations are provided in Sect. 4.

2 Model formulation and preliminaries

The general model of continuously culturing microorganism in a chemostat is given
by the following form of differential equations [11]:

⎧
⎪⎪⎨

⎪⎪⎩

d S

dt
= Q(S0 − S) − 1

δ
f (S)x,

dx

dt
= f (S)x − Qx,

where

(1) S = S(t) is the concentration of substrate (or nutrient) and x = x(t) is the
concentration of microorganism in the chemostat at time t .

(2) Q is the dilution rate of the chemostat (or equivalently, 1/Q is the residence
time of a molecule inside the chemostat) and S0 is the concentration of the input
substrate. The constant δ is the yield constant.

(3) The function f is called uptake function and satisfies the followings [11]:
• (Regulari t y) f : R+ → R+ is continuously differential and f (0) = 0;
• (Monotonici t y) f is monotonically increasing, i.e. d f/d S > 0 for all

S ∈ R+.

Here, we take f (S) = µS and then the above model has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

d S1

dt ′
= Q(S0

1 − S1) − µ

δ
S1x1,

dx1

dt ′
= µS1x1 − Qx1,

(2.1)

where S1 = S1(t ′) and x1 = x1(t ′) are the concentrate of substrate and microorganism
at moment t ′, µ > 0 is the consuming rate of x1 to S1. δ > 0 is the yield rate. Here,
Q > 0 is the dilution rate and S0

1 is the initial concentration of the substrate which is
input continuously.

According to the design ideas of the turbidostat, it is required that the concentration
of the microorganism should be controlled to a certain level which is not larger than
the critical value denoted by xh . It is considered in this paper that the substrate with
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the microorganism is discharged and the additional substrate is input impulsively on
the basis of the chemostat when x1 reaches xh . Therefore, (2.1) can be modified as
follows by introducing the impulsive state feedback control:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S1

dt ′
= Q(S0

1 − S1) − µ

δ
S1x1,

dx1

dt ′
= µS1x1 − Qx1,

⎫
⎪⎪⎬

⎪⎪⎭

x1 < xh,

�S1 = Q1(S0
1 − S1),

�x1 = −Q1x1,

}

x1 = xh,

S1(0) = S10, x1(0) = x10

(2.2)

where Q1 is the impulsive dilution rate controlled by the photoelectricity system when
the concentrate x1 reaches xh . For the convenience of discussion, let

S1 = S0
1 S, x1 = δQ

µ
x, t ′ = 1

Q
t,

then (2.2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S

dt
= 1 − S − Sx,

dx

dt
= aSx − x,

⎫
⎪⎪⎬

⎪⎪⎭

x < h,

�S = b − bS,

�x = −bx,

}

x = h,

S(0) = S0, x(0) = x0

(2.3)

where

a = µS0
1

Q
, h = µxh

δQ
, b = Q1.

In the following, we mainly discuss the existence of periodic solution of (2.3) by
the existence criteria of periodic solution of the general impulsive autonomous sys-
tem. Before introducing the existence criteria, we give the following definitions and
lemmas [18]:

Definition 2.1 (Lakshmikantham, et al. [20]) An triple (X, π, R+) is said to be a
semi-dynamical system if X is a metric space, R+ is the set of all non-negative reals
and π : X × R+ → X is a continuous function such that

(i) π(x, 0) = x for all x ∈ X ;
(ii) π(π(x, t), x) = π(x, t + s) for all x ∈ X and t, s ∈ R+.

we denote some times a semi-dynamical system (X, π, R+) by (X, π).
For any x ∈ X , the function πx : R+ → X defined by πx (t) = π(x, t) is continuous

and we call πx the trajectory of x . The set C+(x) = {π(x, t)|t ∈ R+} is called the posi-
tive orbit of x . For any subset M of X , we let M+(x) = C+(x)

⋂
M −x and M−(x) =
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G(x)
⋂

M − x , where G(x) = ⋃{G(x, t)|t ∈ R+} and G(x) = {y|π(y, t) = x} is
the attainable set of x at t ∈ R+. Finally we set M(x) = M+(x)

⋃
M−(x).

Definition 2.2 (Lakshmikantham, et al. [20]) An impulsive semi-dynamical system
(X, π; M, I ) consists of a semi-dynamical system (X, π) together with a nonempty
closed subset M of X and a continuous function I : M → X such that the following
properties hold:

(i) No point x ∈ X is a limit point of M(x),
(ii) [t |G(x, t)

⋂
M �= ∅] is a closed subset of R+.

According to the denotations in [18], we write N = I (M) = {y ∈ X |y = I (x), x ∈
M and for any x ∈ X, I (x) = x+}. Here in this paper, M is called the set of impulses,
I is referred to the impulsive function.

Defining a function � : X → R+
⋃{∞} as follows:

�(x) =
{∞ if M+(x) = ∅,

s if π(x, t) �∈ M for 0 < t < s and π(x, s) ∈ M,

Here s is called the time without impulse of x , i.e. s is the first time when π(x, 0) hits
M .

Definition 2.3 (Lakshmikantham, et al. [20]). Let (X, π; M, I ) be an impulsive semi-
dynamical system and let x ∈ X and x �∈ M . The trajectory of x is a function π̃x defined
on subset [0, s) of R+ (s may be ∞) to X inductively as following:

π̃x (t) = π̃(x+
n−1, t), τn−1 ≤ t < τn,

where {xn} is the sequence of impulse points of x , which satisfied π(x+
n−1,�(x+

n−1)) =
xn . τn is the sequence of time of impulses relative to {xn}, τn = ∑n−1

k=0 �(x+
k ).

Definition 2.4 (Lakshmikantham, et al. [20]). A trajectory π̃x is said to be periodic
of period τ and order k if there exist positive integers m ≥ 1 and k ≥ 1 such that k is
the smallest integer for which x+

m = x+
m+k and τ = ∑m+k−1

i=m �(x+
i ).

Definition 2.5 (Corless, et al. [21]). LambertW function W is defined as multiple
valued inverse function of f : y → yey = x , we have W (x)eW (x) = x and its
derivative satisfies:

x(1 + W (x))W ′(x) = W (x),

when x �= 0 and x �= −1/e. W (x) has two branches when x ≥ −1/e, here we
define W (0, x) as principal branch satisfying W (0, x) ≥ −1 and another branch
as W (−1, x) satisfying W (−1, x) ≤ −1. We can easily get the basic properties of
function Lambert W :

lim
x→0

W (0, x) = 0, lim
x→0− W (−1, x) = −∞.

More details can be found in [21].
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Theorem 2.1 (Brouwers fixed-point theorem (Griffel [22])). Every continuous map-
ping of a closed bounded convex set in Rn into itself has a fixed point.

The existence criteria for an impulsive autonomous system with state-dependent
has been proved by Theorem 2.1 (Brouwers fixed-point theorem) in [18]. For the
convenience of reading, we repeat the main results of [18].

Consider the following general autonomous impulsive differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= P(x, y)

dy

dt
= Q(x, y)

⎫
⎪⎪⎬

⎪⎪⎭

(x, y) �∈ M,

�x = I1(x, y)

�y = I2(x, y)

}

(x, y) ∈ M.

(2.4)

Here (x, y) ∈ R2, and P, Q, I1, I2 are all functions mapping R2 into R, M ⊂ R2 is
the set of impulse, and we assume:

(H2.1) P(x, y), Q(x, y) are all continuous with respect to x, y in R2.
(H2.2) M ⊂ R2 is a line, I1(x, y) and I2(x, y) are linear functions of x and y.

For each point S(x, y) ∈ M , we define I : R2 → R2:

I (S) = S+ = (x+, y+) ∈ R2, x+ = x + I1(x, y), y+ = y + I2(x, y).

Obviously N = I (M) is also a line of R2 or a subset of a line, and we assume that
N

⋂
M = ∅. From Definition 2.2, we know (2.4) is an impulsive semi-dynamical

system. The following theorem gives the conditions under which (2.4) has a periodic
solution of order one defined by Definition 2.4.

Theorem 2.2 (Zeng et al. [18]) If system (2.4) satisfies assumptions (H2.1) and (H2.2),
and, there exists a bounded closed simply connected region D which has following
properties:

(i) There is no singularity in it and the boundary ∂ D of D is composed of three
parts: L1, L2 and L3;

(ii) L1 = D
⋂

M cannot be tangent with trajectories of (2.4) except at end-points;
(iii) L2 ⊂ I (M) is a line segment which satisfied I (L1) ⊂ L2;
(iv) trajectories with initial point in L2

⋃
L3 will enter into interior of D, then there

must exist a periodic solution of system (2.4) of order one in region D.

3 Periodic solution of (2.3)

Before discussing the periodic solution of (2.3), we should consider the qualitative
characteristics of (2.3) without the impulsive effect. If no impulsive effect is intro-
duced, then (2.3) becomes
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Fig. 2 Illustration of vector
graph of (3.1) when a > 1

S

x

1/a

a-1

⎧
⎪⎪⎨

⎪⎪⎩

d S

dt
= 1 − S − Sx,

dx

dt
= aSx − x,

(3.1)

The following results for (3.1) can be easily obtained and the proof is omitted.

(1) When a ≤ 1, there exists a nonnegative equilibrium (1, 0) which is stable. In this
case, the microorganism is not cultured successfully.

(2) When a > 1, there exist two equilibria (1, 0) and
( 1

a , a − 1
)
. (1, 0) is a saddle

point and
( 1

a , a − 1
)

is globally asymptotically stable node. The vector graph of
(3.1) can be seen in Fig. 2.

From the above discussions and Fig. 2, we know that
( 1

a , a − 1
)

is a stable node
when a > 1. For the initial point x(0) < a −1 and S(0)+ S(0)x(0) ≤ 1, if h > a −1,
then all the solutions of (2.3) tend to the equilibrium

( 1
a , a − 1

)
and no impulse will

occur. If h = a − 1, the system tends to stable, it is unnecessary to control. So we
mainly focus our attentions on the case h < a − 1, x(0) < a − 1 and S(0) < 1.

3.1 Existence of order one periodic solution

In order to apply the existence criteria (Theorem 2.2) of [18], we first need construct a
closed region. our ideas to prove the existence of the periodic solution is to construct a
closed region G1 such that all the solutions of (2.3) enter the closed region and retain
there. The ideas will be illustrated as follows using Fig. 3.

In Fig. 3, the line x = h interacts the isoclinal line d S
dt = 0 at the point A(SA, h),

SA = 1
1+h and interacts the line S = 1 at the point B(1, h). The impulsive set M
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Fig. 3 Illustration of (2.3) for
a > 1, h < a − 1

A B

C D

E

x

S

a-1

h

1/a 10

(1-b)h

dx/dt=0

dS/dt=0 H

A1

xE

G1

lies on the segment AB, that is, M ⊆ AB, AB = {(S, x)|x = h, 1
1+h ≤ S ≤ 1}.

The impulsive function I1 and I2 map the impulsive set M as N = I (M) ⊆ C D,
C D = {(S, x)|x = (1 − b)h, b + 1−b

1+h ≤ S ≤ 1}, where C = C(SC , (1 − b)h), D =
D(1, (1 − b)h), SC = b + 1−b

1+h .
Denote the arbitrary solution of (2.3) by (S, x). Suppose that the trajectory of (2.3)

interacts the segment AB. From the third equation of (2.3), we have S+ = b+(1−b)S
for x = h and further S+

i = b + (1 − b)Si , i = 1, 2, · · · when x = h. Since
Si ≥ SA = 1

1+h , then S+
i ≥ b + 1−b

1+h . On the other hand, the line x = (1 − b)h

interacts the curve d S
dt = 0 at the point H(SH , (1 − b)h), SH = 1

1+(1−b)h and the
following inequality holds:

S+
i − 1

1 + (1 − b)h
≥ b + 1 − b

1 + h
− 1

1 + (1 − b)h
= bh(1 − b)h

(1 + h)(1 + (1 − b)h)
≥ 0,

where 0 < b < 1 (since b is the dilution rate). Therefore, after the first impulse,
S+

i ≥ 1
1+(1−b)h . Suppose that the point H overlaps the point C , that is, SH = SC and

b + 1−b
1+h = 1

1+(1−b)h , then it follows b = 1, which is not suitable in the practice of

production. Thus, SC > SH and S+
i > 1

1+(1−b)h .
Under the impulsive effect, the trajectory of (2.3) passing through the point A jumps

to the point C . Since the point C lies in the region
{
(S, x)| d S

dt < 0, dx
dt > 0

}
, then we

denote the interaction point of AB and the trajectory starting from C by A1(SA1 , h).
If SA1 = SA, then a periodic solution has been found. If SA1 > SA, then we can take

the trajectory
�

A1C as one boundary of the close region G1. Other boundaries of G1
are C D, DB and B A. Since

dx

dt
|C D > 0,

d S

dt
|B D < 0,

then all the trajectories entering the closed region G1 retain there and do not run out
of the region.
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During the above discussions, we suppose that the trajectories interact with the
impulsive set M (x = h or the segment AB). But for the initial point x(0) < a − 1,

S(0) < 1, there still exist some trajectories which do not interact AB. In the following,
we will give the sufficient condition under which the trajectory must interact with AB.

Obviously, there exists one and only one trajectory of (2.3) which passes through
the point A. Next, we introduce a comparison system

⎧
⎪⎪⎨

⎪⎪⎩

d S

dt
= S(h − x)

dx

dt
= x(aS − 1)

(3.2)

System (3.2) has one positive equilibrium
( 1

a , h
)

and all of its solutions are closed
trajectories which satisfy:

V (S, x) � x + aS − h ln x − ln S + V 0
1 = C1,

where V 0
1 = h ln h + ln 1

a − h − 1, C1 is an arbitrary constant. The derivative of
V (S, x) along the trajectories of (2.3) is

dV

dt
|(2.3) = 1

S
(aS − 1)(1 − S − hS).

When 1
a ≤ S ≤ 1

1+h , then dV
dt |(2.3) ≥ 0 which implies that the trajectories of (2.3)

interacting with the trajectories of (3.2) passes through the trajectories of (3.2) from
the left to the right(see Fig. 3). In addition, the trajectory of (3.2) passing through A
interacts the line S = 1

a at the point E
( 1

a , xE
)

and the following equations holds:

h + a

1 + h
− h ln h − ln

1

1 + h
= xE + 1 − h ln xE − ln

1

a
.

It follows that

xE − h ln xE = C2,

where

C2 = h + a

1 + h
− h ln h − ln

1

1 + h
− 1 + ln

1

a

and

xE = −hW

(

0,− 1

h
exp

(−C2

h

))

.

It can be easily shown that − 1
h exp

(−C2
h

)
> − 1

e . Therefore, when (1−b)h < xE for

S(0)+ S(0)x(0) < 1 and x(0) < a −1 (see Fig. 3), the trajectories must interact AB.
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Furthermore, by the existence criteria of periodic solution in Theorem 2.2, we have
the following theorem:

Theorem 3.1 Suppose that a > 1, h < a − 1 and one of the following conditions
holds:

(1) x(0) < h and S(0) + S(0)x(0) ≥ 1;
(2) (1 − b)h ≤ xE , x(0) ≤ xE and S(0) + S(0)x(0) < 1,

then system (2.3) has an order one periodic solution.

3.2 Existence of order k(k ≥ 2) periodic solution

From Theorem 3.1, we know that (2.3) has an order one periodic solution. In this
subsection, we will discuss the stability of the periodic solution.

Suppose that (S̃, x̃) is the periodic solution of (2.3), then (S̃0, x̃0) ∈ N ⊆ C D
and (S̃1, x̃1) ∈ M ⊆ AB. The arbitrary trajectory (S, x) of (2.3) from the initial
point (S(0), x(0)) interacts the set M (x = h) at the point (S1, h), by the effect of
the impulse, the trajectory jumps to (S+

1 , (1 − b)h) from (S1, h). Consequently, the
interaction points of the trajectory and the set M are (S2, h), (S3, h), . . ., respectively.
Under the effect of impulsive function I , the corresponding initial points after every
impulse are (S+

1 , (1 − b)h), (S+
2 , (1 − b)h), (S+

3 , (1 − b)h), . . ..
By the quality of the autonomic system, there is one and only one of the following

sequences:

Case (a) S1 ≤ S2 ≤ S3 ≤ · · ·
and
Case (b) S1 ≥ S2 ≥ S3 ≥ · · · .

We can assume that limn→∞ Sn = S̃1 (or limn→∞ S+
n = S̃0). Otherwise, suppose that

above monotone sequences have no limitation in the region G1, then it is implied that
(2.3) has no periodic solution, which contradicts the conclusion of Theorem 3.1.

In addition, considering the monotony of the sequences, we know that the limita-
tion is unique, furthermore, limn→∞ Sn = S̃1, that is, S1 ≤ S2 ≤ S3 ≤ · · · ≤ S̃1 or
S1 ≥ S2 ≥ S3 ≥ · · · ≥ S̃1. By the proof of Proposition 3.3 in [15], it can also be
obtained that there is no order k(k ≥ 2) periodic solution in system (2.3) and thus the
system is not chaotic.

4 Discussions and numerical simulations

In this paper, we have investigated the existence of the periodic solution of a mathe-
matical model concerning a turbidostat by the Poincare-Bendixson theorem and the
existence criteria of periodic solution of a general impulsive autonomous system. Fur-
thermore, the results show that (2.3) either tends to the stable state or has a periodic
solution.

In order to verify the theoretical results in this paper, we next give the numerical
simulations of (2.3). Let a = 2, b = 0.1, S(0) = 0.4, Fig. 4 gives the simulated
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Fig. 6 The time series and portrait phase of (2.3) when S(0) = 0.85, x(0) = 0.7 and other parameters are
the same as those of Fig. 5

time series and phase portrait when x(0) = 0.5 and h = 1.2 > a − 1 = 1. From
Fig. 4, we know that no impulse occurs when h > a − 1. If we take h = 0.8 with
S(0) = 0.55, x(0) = 0.5, the time series and phase portrait can be seen in Fig. 5.
From Fig. 5, it can been seen that the trajectory tends to a periodic trajectory from
the left side. Figure 6 (S(0) = 0.85, x(0) = 0.7 and h = 0.8 ) is the time series and
the phase portrait and shows that the trajectory tends to a periodic trajectory from the
right side.

A potential application area of a turbidostat with the feedback control is the
commercial and industrial production of the microorganism. The microorganism in
the turbidostat always keeps the highest growth rate and the concentration of the
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microorganism can be controlled to a given level. In the production practice, to obtain
large number of cell or some of secondary metabolites, such as lactic acid, ethanol, one
can use the turbidostat. In the paper, we have shown that the system either tends to the
stable state ( the equilibrium if h ≥ a − 1) or has one periodic solution (if h < a − 1).
According to the theoretical results, either the production of the microorganism tends
to be stable or the production will be periodic. The key to the production by applying
the turbidostat is to give the suitable feedback state (the value of xh or h) and the
control parameter (Q1 or b). Firstly, the dilution rate Q1 should be fixed according to
the concentration S0

1 of the substrate such that a > 1. Otherwise, if a ≤ 1, then the
microorganism could not be cultured successfully. Secondly, the impulsive dilution
rate should be given according to the feedback state and the practice of the produc-
tion. In addition, the initial states of the microorganism and the substrate should be
considered in practice.
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